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Abstract:This paper addresses the problem of learning a regression model for the prediction of data traffic in a cellular

network. We proposed a cooperative learning strategy that involves two Jordan recurrent neural networks (JNNs)

trained using the firefly algorithm (FFA) and resilient backpropagation algorithm (Rprop), respectively. While the

cooperative capability of the learning process ensures the effectiveness of the regression model, the recurrent nature of

the neural networks allows the model to handle temporally evolving data. Experiments were carried out to evaluate

the proposed approach using high-speed downlink packet access data demand and throughput measurements collected

from different cell sites of a universal mobile telecommunications system-based cellular operator. The proposed model

produced significantly superior results compared to the results obtained on the same problems from the traditional

method of separately training a JNN with FFA and Rprop.

Key words: Neural networks, cooperative methods, throughput prediction, firefly algorithm, resilient propagation

algorithm

1. Introduction

With the recent proliferation of mobile devices with Internet connectivity capabilities and the deployment of

mobile data networks globally, the demand for mobile data has increased immensely. According to recent

International Telecommunication Union (ITU) statistics [1], the year 2015 witnessed unprecedented growth in

information and communication technologies (ICTs) with Internet user penetration increasing by 7-fold since

2000 and 3G mobile broadband penetration globally reaching 47%, a value that showed a 12-fold increase since

2007 [1]. Although the present day mobile networks (e.g., 3G and 4G) can provide high-speed mobile data for

users, network operators are still faced with several challenges including how to continually plan and optimize

the network resources in order to guarantee quality of service (QoS) and end-user experience. One way to

handle this issue is to estimate (predict) the mobile data demand beforehand, so that network resources can be

efficiently and adequately distributed to handle the demand.

Mobile data traffic prediction plays an important role in facilitating the optimization and scheduling of

mobile data network resources because it helps in estimating the mobile data traffic ahead of time [2]. With

a timely estimate of the mobile data demand, network operators, for example, can automatically perform

optimization of their antennas in order to adjust the radiation pattern of the antennas to curtail traffic

congestion. Long-term (6 months to a year) mobile data traffic prediction is useful for network resource planning

and system capacity expansion. Short-term (1 h to weeks) mobile data traffic prediction, on the other hand, is
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important for example for short-term network facility maintenance scheduling. This paper is concerned with the

latter prediction period. We explore the use of a cooperative neural network approach to improve the prediction

of mobile data traffic in a universal mobile telecommunications system (UMTS)-based mobile data network.

The paper is organized as follows: Section 2 provides the related work, Section 3 discusses the methodology,

and Section 4 presents the proposed prediction model. The experimental procedure followed is described in

Section 5. The results are presented and discussed in Section 6. Section 7 concludes the paper.

2. Related work

The problem of data traffic prediction in a cellular network is usually posed as that of regression involving

estimating the future data traffic using past measurements or historical data [3]. There are two major approaches

for the regression process, namely statistical modeling and machine learning [4,5]. With the statistical modeling

approach, the moving averages of past measurements of the data traffic are used to predict future data traffic

[6]. For example, Svoboda et al. [7], Yu et al. [8], and Dong et al. [2] studied the performance of autoregressive

moving average (ARMA) and dynamic harmonic regression (DHR) for the prediction of data traffic of 3G and

4G mobile networks. Similarly, Yoo and Sim [9] predict the expected bandwidth utilization on high-bandwidth

wide area networks using autoregressive integrated moving average (ARIMA). However, ARMA, DHR, and

ARIMA rely heavily on user experience and give rise to a regression model that cannot be directly applied

to data traffic with unknown characteristics [10]. Machine learning methods such as neural networks (NNs)

[11] and support vector regression (SVR) [12], on the other hand, allow the development of a regression model

without prior knowledge of the characteristic of the traffic data. For example, Mirza et al. [4] predict the

transfer control protocol throughput of a network that comprises multiple paths between data senders and

receivers using SVR. Lawal et al. [13] propose a feedforward neural networks (FNNs) ensemble approach for

predicting the data traffic in a UMTS-based cellular network. FNN is, however, limited to handling stationary

data and since mobile data from the UMTS-based network are often nonstationary due to time varying behavior

of the underlying network characteristics its performance can sometimes fall short of the desired accuracy.

Similar to the approach by Lawal et al. [13], in the present paper, we propose a technique that employs

NN models cooperating by transferring knowledge and experience during the training process in order to improve

the accuracy of the data traffic prediction problem. Unlike Lawal et al. [13], in the present work, we use a

recurrent NN specifically designed to handle temporal (i.e. nonstationary) data for reliable mobile data traffic

prediction. Moreover, while Lawal et al. [13] employed only one data set, i.e. high-speed downlink packet access

(HSPDA) traffic demand, for the evaluation of their proposed approach, we, on the other hand, use the HSDPA

traffic demand data set and an additional HSDPA user throughput dataset for evaluation. The user throughput

is the speed at which data are transferred at a given period of time and it is used as an important QoS metric

in cellular data networks [14].

3. Methodology

NNs are being applied in predicting traffic in high-speed communication networks [15], and, traditionally, the

model of choice is a feedforward NN (FNN) trained using a backpropagation algorithm [16]. FNNs are, however,

not designed to handle dynamic systems and are therefore limited to handling stationary data. Since practical

applications such as data traffic forecasting are often dynamic, recurrent NNs (RNNs), which are specifically

designed to handle temporal data, are required for effective modeling. The widely used RNNs in forecasting
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applications are the Elman NN (ENN) and Jordan NN (JNN), and a recent empirical study has shown the

superiority of the JNN over the ENN in forecasting applications [17]. Moreover, the classical backpropagation

algorithm is known to be susceptible to premature convergence on a local minimum. Another drawback of

backpropagation is that it is heavily dependent on the search starting points. Global training algorithms such

as FFA are being used as alternatives, to address the issues of the backpropagation algorithm. The FFA has

been shown to be effective in training NN forecasters [18]. The following sections discuss the JNN and the FFA

and Rprop algorithms used in this study.

3.1. Jordan neural network

The JNN is a model that realizes functional dependency between sequence elements and estimates on one hand

and the to-be forecast value on the other [19]. The JNN is similar to a standard three-layer feedforward NN

structure with additional feedback connections from the output layer to a context layer in order to deal with

temporal characteristics of sequential data. The context layer serves as an extension to the input layer, and the

context node is fully interconnected with all hidden layer nodes. Thus, the input vector,

X = x1, ..., xl+1︸ ︷︷ ︸
Input

, xl+2, ..., xl+1+K︸ ︷︷ ︸
Context

(1)

The activation function of each output node is calculated as

Ok = fOk

J+1∑
j=1

wk,jfyj

(
I+1+K∑

i=1

vj,ixi

) (2)

where (xI+2,, . . . , xI+1+K) = (O1 (t− 1) , . . . , OJ(t− 1)).

3.2. Resilient propagation algorithm

The Rprop is an efficient supervised batch learning scheme that performs a direct adaption of weight step based

on local gradient information. At the beginning, weights of the NN are initialized randomly to small numbers

such that the mean of the weights is approximately zero and all update values are set to initial value δ0 , usually

chosen as a small value, e.g., δ0 = 0.1 [20]. Choice of this value is not critical because it is adapted during the

learning process. To prevent overflow/underflow problems, parameters δmax and δmin are respectively used to

place restriction on the upper and lower bounds of the update step sizes. At each iteration, if the derivative

∂E/∂wi.j changes sign, the weight update value, δi,j(t), is decreased by the factor η− (to reduce the effect of

the previous large update), while, in contrast, if the derivative retains its sign, the update value is increased by

η+ (to promote convergence) before weight adjustment. Riedmiller [21] suggested η+ = 1.2 and η− = 0.5 as

a good choice. For most problems, Rprop does not require optimizing parameters to obtain optimal or at least

near optimal convergence times and this is one of its key strengths [21].

3.3. Firefly algorithm

The FFA is a biologically inspired meta-heuristic global optimization method developed in 2008 by Yang, based

on the following assumptions [22]:

• All fireflies get attracted to each other
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• Attraction is proportional to brightness, and both decrease as distance increases. For any two fireflies, the

less bright one is attracted to the brighter one. Fireflies move randomly when there is no brighter one.

• The brightness of a firefly is determined by the landscape of the objective function optimized.

The variation of attractiveness is defined as [23]

β (r) = β0e
−γr2 (3)

where r is distance and β0 the attractiveness as r = 0, and γ is light absorption coefficient.

The movement of a firefly p attracted by a brighter one, say q , is determined as

xpk (t+ 1) = xpk (t) + β0e
−γr2pq [xqk (t)− xpk (t)] + α (t) ϵpk (t) , (4)

where k = 1 . . . D , (D is the dimension of the problem) and α (t) controls the step size, while ϵp (t) is a vector

of random numbers at time t . The FF algorithm is summarized in Algorithm 1.

To train a NN with the FFA, each firefly in the swarm represents a weight vector of the NN and the sum

square error (SSE) is used to calculate the fitness of each firefly. With this representation and fitness function,

the FFA is used to minimize the NN’s weight vector.

Algorithm 1 Firefly Algorithm

Require: Randomly initialize a population of fireflies

Require: Initialize algorithm parameters a , b0 , and g

while stopping condition(s) are not true do

for each firefly p = 1 : n do

for each firefly q = 1 : n do

if f (xp) < f (xq) then

Move firefly p towards q using Eq. 4

Vary b0 with distance r using Eq. 3

Evaluate and update solutions

end if

end for

end for

Rank fireflies and find the current best

end while

4. Proposed prediction model

In this paper, a cooperative JNN model is proposed for modeling mobile data traffic. The proposed technique

employs two different JNN models cooperating by transferring knowledge and experience during the training

process. The structure of the proposed model is shown in Figure 1. A JNN is first trained using the FFA for

In/5 iterations to locate a promising region in the weight space, where In is the total number of iterations

budgeted for training. The set of weight obtained is then passed to the second JNN for its weight initialization.

The second JNN is then trained using Rprop for the remaining 4In/5 iterations to further fine tune the weights.

The values In/5 and 4In/5 for the FFA and Rprop training were respectively found to be optimal via cross

validation from the values [1/10, 1/5, 2/5, 3/5, 4/5] considered.
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Figure 1. Cooperative firefly-Rprop Jordan neural network.

5. Experimental setup

To evaluate the effectiveness of the proposed model in data traffic forecasting applications, an empirical study

comparing it with two models, the JNN trained using Rprop and the JNN trained using FFA, was performed.

All experiments were carried out using version 0.9 of the Computational Intelligence Library (CILib). CILib is

available at https://github.com/cirg-up/cilib. Section 5.1 describes the dataset used in the study. Section 5.2

lists the control parameters for the algorithms employed. Performance measures and statistical tests used are

described in Sections 5.3 and 5.4, respectively.

5.1. Datasets

Two datasets were used in the study:

1) HSDPA traffic demand (HSDPA-TD): consists of 690 data points representing the aggregated hourly

measurement of HSDPA-TD from 60 different cell sites of a Nigerian UMTS-based cellular operator, from

1 to 30 January 2016. The dataset was first used in [13] and is available at http://tinyurl.com/zcwo7qs.

As shown in Figure 2a, the data series is nonstationary, with a slight upward trend, and strong seasonal

patterns.

2) HSDPA throughput (HSDPA-T): the HSDPA-T data series has a total of 683 observations representing an

aggregate hourly data throughput per user recorded over 36 cell-sites of a Nigerian UMTS-based cellular

operator, for a period of 28 days. Illustrated in Figure 2b, the HSDPA-T series has a constant trend and

a strong seasonal pattern with no obvious outliers. Another distinct feature of the series is it increases in

variability. The HSDPA-T dataset can also be obtained at http://tinyurl.com/zcwo7qs.

To ensure the datasets fall within the active range and domain of the activation functions used, they were scaled

to [–1, 1] using linear transformation,

xm = (b− a)
x0 − xmin

xmax − xmin
+ a (5)
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Figure 2. Samples of the datasets used for the evaluation of the proposed method.

where xm and x0 represent the scaled and original data; a and b define the lower and upper limits of the

scaled data; xmin and xmax are the minimum and maximum values of the original data, respectively. For faster

convergence as suggested in .....[24], the datasets are further normalized to set the mean of the training data

close to zero. Normalization was done using

x′
m =

xm√
M

, (6)

where x′
m is the normalized observation and M is the total number of observations. The first 70% of the

dataset was used for training and the remaining 30% for testing.

5.2. Parameters

For each dataset, an NN structure (which involves the number of input, hidden, and output layer nodes) was

selected. Other parameters of the training algorithms used were also selected for optimal performance. All

these parameters were determined as follows:

1) JNN Architecture; the number of input nodes, n , is fixed at 24, one for each of the 24 hours in a day.

This intuitive method was used by several analysts such as [3,25] and has been effective in constructing

optimal NN structures. The number of hidden layer nodes, h , was determined using [26]

Nh =
(4n2 + 3)

(n2 − 8)
(7)

A single output node is used, and the multistep (i.e. the 6-h and 12-h ahead) forecasts considered were

generated iteratively using a single step ahead (i.e. one output node) as used in Box–Jenkins model [27].

In the iterative multistep strategy, forecast values are iteratively used as inputs for the next forecasts. In

the hidden and output layer nodes, a modified hyperbolic tangent function was employed and is defined

as [24]

f (net) = 1.7159 tanh

(
2

3
net

)
(8)
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This choice was in line with the range the datasets were scaled.

All NNs’ weights were randomly initialized in the range (− 1√
F

1√
F
), where F is the number of incoming

connections for a specific node. Wessels and Barnard [28] have shown this to be a good initialization
range.

2) Rprop setup: Default algorithm parameters were adopted because for many problems the parameters lead

to optimal convergence [21].

3) FF setup: A swarm of 20 fireflies was used, αwas set to vary linearly from 0.2 to 0, β0 was fixed at 0.2,

and γwas set to 1.0. This setting was adopted from [18], where the authors evaluate the effectiveness of

the FF algorithm in training a NN forecaster.

5.3. Performance measure

Mean square error (MSE) and mean absolute percentage error (MAPE) are employed to measure the perfor-

mance of the proposed model. Generalization factor, ρ , is also used to measure the generalization ability of the

model. The ρ proposed in [29] indicates the overfitting behavior of a model and it is defined as EG/ET , where

ET and EG are the MSE over the training and generalization sets respectively. Overfitting is a phenomenon

where a model performs well on training data but poorly on generalization data. ρ < 1 is an indication of

good generalization performance while ρ > 1 is an indication of overfitting.

5.4. Statistical methods

In the study, 50 independent runs were carried out for each experiment, with the mean ET and EG reported.

A two-tailed nonparametric Mann–Whitney U test [30] was used to determine whether the difference in

performance when comparing results is statistically significant. Tests were evaluated at 95% level of significance.

All reported P-values were bounded below by 0.0001 for convenience.

6. Experimental results and discussion

Table 1 summarizes the average ET and EG produced by the proposed and benchmark models in 6- and 12-h-

ahead prediction of the HSDPA-TD and HSDPA-Th data series, with minimum values displayed in bold. Also

reported in the table is the ρof the forecasting models. Table 2 presents the P-values of the pair-wise comparison

of the models investigated. For convenience, the following naming conventions are used in the tables:

• J-Rprop; a model of JNN trained using Rprop

• J-FF; a model of JNN trained using FFA

• J-FFRprop; the proposed model

For the HSDPA-TD and HSDPA-Th problems, the J-FFRprop model produced the lowest average ET and EG

in both the 6- and 12-h-ahead prediction, significantly outperforming the J-Rprop and J-FF models. The J-FF

yielded significantly better results compared to J-Rprop on both ET and EG in the 6- and 12-h-ahead prediction

of the two data series. All the models studied indicated no sign of overfitting, except for J-Rprop, which showed

a slight sign of overfitting in 6-h-ahead prediction of HSDPA-TD, and in 12-h-ahead of HSDPA-Th.

Figure 3 illustrates performance progression of the forecasting models over time, obtained on the HSDPA-

TD problem during training and generalization. As visualized in the figures, the J-Rprop model struggles
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Table 1. Results of predicting HSDPA-TD and HSDPA-Th data series: means over 30 samples reported.

HSDPA-TD

Model
6-h-ahead 12-h-ahead
ET EG ρ ET EG ρ

J-Rprop
1.32E – 04 1.36E – 04 1.03 1.94E – 04 1.53E – 04 0.79
(8.10E – 05) (8.22E – 05) (0.11) (1.36E – 04) (6.25E – 05) (0.21)

J-FF
2.14E – 05 1.74E – 05 0.81 2.16E – 05 1.79E – 05 0.82
(1.23E – 06) (1.18E – 06) (0.03) (1.15E – 06) (9.68E – 07) (0.05)

J-FFRprop
1.69E – 05 1.48E – 05 0.88 1.71E – 05 1.50E – 05 0.88
(3.11E – 07) (2.39E – 07) (0.02) (3.27E – 07) (3.33E – 07) (0.02)

HSDPA-Th

Model
6-h-ahead 12-h-ahead
ET EG ρ ET EG ρ

J-Rprop
1.60E – 04 1.31E – 04 0.82 1.67E – 04 1.84E – 04 1.10
(1.46E – 05) (1.35E – 05) (0.17) (1.29E – 05) (4.35E – 05) (0.21)

J-FF
6.53E – 05 6.14E – 05 0.94 6.94E – 05 6.32E – 05 0.91
(7.18E – 07) (9.07E – 07) (0.01) (9.08E – 07) (1.22E – 06) (0.00)

J-FFRprop
6.37E – 05 5.72E – 05 0.90 6.42E – 05 5.95E – 05 0.93
(7.18E – 08) (2.11E – 07) (0.01) (6.11E – 08) (3.41E – 07) (0.02)

Table 2. Mann–Whitney P-values obtained for the average ET and E G comparisons with reference to the null hypothesis

that the means of the compared samples are equal at the significance level of 95%.

Problem

Model P-values
6-h-ahead 12-h-ahead
ET EG ET EG

HSDPA-TA

J-Rprop vs. J-FF 0.0001 0.0001 0.0001 0.0001
J-Rprop vs. J-FFRprop 0.0001 0.0001 0.0001 0.0001
J-FF vs. J-FFrprop 0.0001 0.0001 0.0001 0.0001

HSDPA-Th

J-Rprop vs. J-FF 0.0001 0.0001 0.0001 0.0001
J-Rprop vs. J-FFRprop 0.0001 0.0001 0.0001 0.0001
J-FF vs. J-FFrprop 0.0001 0.0001 0.0001 0.0001

for about 200 iterations to locate a local minimum, due to the problem of search starting point peculiar to

backpropagation methods. However, the algorithm efficiently followed the error gradient to find the minimum.

For the J-FF model, the error keeps reducing gradually with iterations, which indicates the training

algorithm maintains a good continuous exploration/exploitation trade off in the search space. The step size

αt of the FF algorithm was set to vary linearly from 0.2 to 0, causing the fireflies to have initial large steps

(promoting exploration) that linearly decrease to a small value (facilitating exploitation). As evident in the

figure, the proposed model exploits the strength of both the Rprop and FF training methods, to emerge as

the best model. The J-FFRprop model uses the initial exploration capacity of the FF algorithm to locate a

promising region of the search space and then use Rprop’s ability to fine tune the weights in that region.

Table 3 compares the actual values of the HSDPA-TD and HSDPA-Th datasets with their forecasted

values obtained from the proposed model and the benchmarks. This is further illustrated in a forecast diagram

presented in Figure 4. The J-FFRprop model yielded the lowest MAPE and MSE in predicting both the

HSDPA-TD and HSDPA-Th.
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Figure 3. Training and generalization error results for HSDPA-TD 6-horizon.

Table 3. Results of predicting HSDPA-TD and HSDPA-Th data series on original scale.

Problem Model
6-h-ahead 12-h-ahead
MAPE MSE MAPE MSE

HSDPA-TD

J-Rprop 9.85 6.24E + 07 9.95 8.70E + 08
J-FF 9.74 6.43E + 07 9.64 6.33E + 07
J-FFRprop 9.56 6.22E + 07 9.52 6.14E + 07

HSDPA-Th

J-Rprop 8.58 4.19E + 04 5.50 1.85E + 04
J-FF 8.49 4.10E + 04 4.75 1.47E + 04
J-FFRprop 8.32 3.63E + 04 4.41 1.29E + 04

(a) Forecast diagram for HSDPA-TD 12-horizon (b) Forecast diagram for HSDPA-" 6-horizon 
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Figure 4. Forecast diagram for HSDPA-TD 6-horizon and HSDPA-Th 12-horizon.

7. Conclusion

This paper proposed a new prediction model based on a cooperative NN strategy in order to improve the

prediction accuracy of mobile data prediction in UMTS-based mobile data networks. The model employs two

different JNN models cooperating by transferring knowledge and experience during the training process.
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A JNN is first trained using the FF algorithm for a number of iterations to locate a promising region in

the weight space. The set of weights obtained is then passed to the second JNN for its weight initialization.

The second JNN is then trained using Rprop to further fine tune the weights. Experiments were carried to

evaluate the performance of the proposed model (i.e. J-FFRprop) in the prediction of two different HSDPA

data series. The results obtained were compared with the results of two monolithic models, J-Rprop and J-FF.

The J-FFRprop produced a significantly better result in 6- and 12-h-ahead prediction of the data series used.

The proposed model also shows no sign of overfitting.
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