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ABSTRACT
This paper demonstrates the use of GMDH algorithm as an alterna-
tive approach for forecasting mobile user throughput in a cellular
data network. We measure the hourly throughput per user for three
weeks and use it to train a GMDH-based model for predicting the
user throughput for the fourth week. We adopt a modelling strategy
that employs a single next-day forecaster iteratively to estimate
an entire week throughput. Our experimental results show that
the GMDH-based forecaster performed very well with a mean per-
centage error as low as 1.87%. We also compare the performance
of the GMDH-based forecaster with that developed using state-of-
the-art LSTM method and show that it can achieve a comparable
performance against the LSTM method. Moreover, the GMDH al-
gorithmâs ability to select only effective input variables during
model training reduces the dimensionality of the training data by
43% and allows the development of simpler and more interpretable
throughput forecaster.
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1 INTRODUCTION
A major challenge for mobile network operators is how to plan
and optimise network resources to guarantee the quality of ser-
vice to their network subscribers during planned outages or peak
periods [6, 8]. he throughput experienced by network users is an
important indicator of the performance and quality of the network
connection [3]. Thus, by predicting the expected throughput in
advance, network operators can schedule and distribute network
resources to cater to the need of their subscribers more efficiently
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[17]. Short-term (i.e. one hour to one week) throughput forecasting
is crucial for network analysis to ensure performance benchmarks
are being met and also for scheduling functions such as system
update and base transceiver station maintenance [1].

Network throughput forecasting can be formulated as a time
series prediction problem using historical network data and statis-
tical analysis such as Autoregressive Integrated Moving Average
(ARIMA) can be applied in solving the problem [11]. However, this
approach relies heavily on user experience and may not appeal to
mobile data network operators. The ARIMA approach, however,
relies heavily on user experience and does not appeal to mobile
network operators. Machine Learning (ML) methods such as Long
Short-Term Memory (LSTM) [15] and Group Method of Data Han-
dling (GMDH)1 [4], on the other hand, allow the development of
time series forecasting model without the prior knowledge of the
characteristic of the time series data [2, 9]. In other words, a user
does not need to explicitly specify the model relationship for any
given time series data during model synthesis. Therefore, the fore-
casting model is free from bias and prior assumptions on the data
distribution. LSTM has been used for prediction in many appli-
cations [5, 10, 16]. In spite of the extensive use of the method in
forecasting problems, it still suffers from some limitations. These
limitations include difficulties in determining critical network and
training parameters, such as the size of the network layers, type
of transfer function and learning rate. Moreover, with the LSTM
method, it is difficult to understand the relative significance and
contribution of the different input variables during the model syn-
thesis. GMDH algorithm has emerged recently as a powerful tool
for solving forecasting problems [13, 14]. The method offers the
advantages of an automatic configuration of the model structure
and efficient selection of only the most relevant input variables
during model development, which provides a better insight into
the model [13]. Inspired by the results achieved with the GMDH
method in the past [7, 13, 14], we present the GMDH algorithm
as an alternative method that alleviates many of the limitations of
LSTM, for short-term network throughput forecasting in a cellular
data network.

2 METHODOLOGY
The GMDH algorithm is a formalised paradigm for iterative and
multi-layer polynomial regression that can be used to synthesise
model for prediction [13]. The modelling process occurs in an evolu-
tionary manner, where simple input-output polynomial regression
relationships initialised in one iteration, is used to derive more
accurate model representations in the next iteration [4]. After each
iteration, the algorithm selects and retains only polynomial relation-
ships and the input variable combinations that have good prediction
1Group Method of Data Handling [online]. http://www.gmdh.net/ [Last accessed
17.07.2019]
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power for the next iteration [4]. The selective discarding of under-
performing input variables has the advantage of limiting the model
complexity by preventing the exponential growth of the polyno-
mial expressions. The model synthesis is terminated automatically
when the polynomial regression begins to have poorer prediction
performance than those generated in the previous iterations.

2.1 GMDH-based one-step ahead model
To develop a GMDH-based one-step ahead model, we require a
time-series data with N rows of data samples andm + 1 columns
form independent variables [F0, F1, F2, . . . , Fm] as inputs and one
dependent variable y = Fm+1, as the targeted output. First, the
GMDH algorithm split the data into training and selection sets.
Then the modelling process begins by initialising the first iteration,
whereby each pair of the training input variables (Fi , Fj ; i, j =
0,1,2,. . . ,m) together with the corresponding output y are taking
as the predictors to derive the following regression polynomial
equation [4]:

ŷi = b0 + b1Fi + b2Fj + b3FiFj + b4F
2
i + b5F

2
j (1)

where b0,b1,b2, . . . ,b5, are the coefficient of the input variables.
Each of them(m − 1)/2 regression equations produced is evaluated
using the sample for the pair of input variables used to derive it, to
generate new estimation ŷi , ∀i , i ∈ [1, 2, . . . ,m(m − 1)/2] known
as the partial descriptor for the targeted output y. The Root Mean
Square Error (RMSE) for each of the partial descriptors ŷi , over
the selection set is computed to select only the ŷi having good
predicting power. The RMSE value ri ∀i is computed as [4]

ri =

[∑n
k=1(yk − ŷik )

2∑n
k=1 y

2
k

]0.5
(2)

where n is the size of the selection set. The polynomial equations
and the corresponding ŷi with ri value below a preset error thresh-
old are selected and kept while the under-performing ones are
discarded. The minimum ri value i.e. rmin

i recorded is also saved.
The selected partial descriptors ŷi are then used for repeating the
model estimation process in the next iteration to derive the next
set of higher-layer partial descriptors. At the end of next iteration,
the rmin

i obtained is compared with the one saved in the previous
iteration and the modelling process is terminated when the value of
rmin
i begin to increase more than its previous value or when a de-
sired model complexity is reached. The final GMDH-based one-step
ahead forecasting model can be considered computationally, as a
layered network of partial descriptors, each layer representing the
results of an iteration. Algorithm 1, enumerates the steps involved
in the GMDH modelling process, while Figure 1 shows an exam-
ple of a GMDH-based one-step ahead forecaster developed in this
work using the dataset described in Section 3.1. As illustrated in
the figure, the model contains four-layered (i.e. layer 0-3) network
and each layer consist of at least one partial descriptor (neuron)
with linear or quadratic input combinations. Among the seven in-
put variables (F0 − F6) provided per sample during modelling, the
algorithm automatically selected only four most relevant ones (i.e.
F0, F1, F3, F4), thus reducing the dimensionality of the input data
by 43%.

Algorithm 1 GMDH modelling for one-step ahead forecast.

1: Terms: ŷ:-partial descriptor, r :-RMSE value, rmin :- lowest r
2: Input: Time series dataset
3: Output: Forecasting model
4: Begin:

i. Split input data into training and selection sets.
ii. Generate different pairs of the training input variables.
iii. Set the error threshold and maximum number of layers.

5: Step 1:
for each pair of input variables do
Derive the polynomial equation in Eq.1.
Compute ŷ from Eq.1 with data for each pair of the input

variables.
Compute r for ŷ over the selection set using Eq.2.

end
iv. Retain all polynomial equations for ŷ with r ≤ threshold
v. Represent selected polynomial equations as new layer

of the model
vi. Create new pairs of input combinations using all the ŷ
vii. Record the value for rmin .
while rmin decreases & number of layers not reached do

Go to Step 1.
end
viii. Return model; a multi-layered polynomial network

6: End

2.2 Iterative forecast using GMDH-based model
We aim to forecast the network throughput for seven days ahead.
However, the GMDH-based model by default can only be used for
one-step-ahead or one-day forecasting and cannot be directly ap-
plied for seven-days ahead forecasting. Two possible strategies can
be used to overcome the aforementioned limitation. This includes
using the single GMDH-based one-step ahead model iteratively
seven times, or the direct use of seven dedicated GMDH-based
one-step ahead models, each independently trained to forecast
the network throughput for each day of the week. For this paper,
we adopt the former approach whereby the value of the network
throughput forecasted in one iteration is provided as input to the
same model in the next iteration until the network throughput
for the entire seven days of the evaluation week forecasted. This
approach is similar to the rolling-origin strategy used for the out-
of-sample test to evaluate the accuracy of forecasting model [12].
There is a concern that the iterative method could lead to the accu-
mulation of the forecasting error. However, in a practical setting,
this approach is more computationally cost-effective, because only
one GMDH-based model is developed and maintained over time,
and not seven independent and dedicated models.

3 EXPERIMENTS AND DISCUSSION
3.1 Dataset
We used High-Speed Downlink Packet Access (HSDPA) dataset
that was recorded from sixty different cell sites of a UMTS-based
cellular network operator over a period of four weeks, in a densely
populated urban area. The dataset consists of 683 data points rep-
resenting the aggregated hourly average throughput per user in
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Figure 1: A four-layered GMDH-based next-day throughput
forecaster. Only 4 (F0,F1,F3 and F4) input variables selected
from the 7 (F0-F6) provided during training.
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Figure 2: The plot of the HSDPA dataset showing the aggre-
gated hourly average throughput per user in Kbps.

Kilobit per second (Kbps), for all the sixty cell sites combined. Fig-
ure 2 shows a plot of all the data points in the dataset. As illustrated
in the figure, the dataset is characterised by a 24-hour seasonality
and also exhibits high variability. The dataset is available online for
public use2.

3.2 Experimental Setup
We conducted two experiments as follows: In the first experiment,
we aim to forecast the one-hour ahead average throughput per user.
We use the first 3-week historical data for model development (train-
ing) and that for the fourth week for model evaluation. A sample in
the training data have the following values [F0 = xi−6,. . . ,F4 = xi−2,
F5 = xi−1, F6 = xi ] as input variables and xi+1 as targeted output.
xi is the measured average throughput per user for the ith hour,
where i = 7 is the time lag window. We set the maximum number
of layers for the GMDH algorithm to infinite and the threshold
2HSDPA Dataset: https://www.dropbox.com/s/fkt3gdlxogedf84/Dataset.xlsx?dl=0

for stopping the training to 10−3. In the second experiment, we
aim to forecast the average throughput per user for a whole one
week ahead. Thus, we convert the HSDPA dataset to daily data by
integrating the hourly throughput measurements over a period of
24 hours. Each datapoint in the new dataset now represents the av-
erage throughput per user per day. Like in the previous experiment,
we use the daily average throughput data for the first 3-week for
training and that for the fourth week for model evaluation. Figure 1
shows the model structure of a 4-layered GMDH-based next-day
average throughput forecaster developed and used iteratively seven
times (as discussed in Section 2.2) to predict the user throughput
for the evaluation week. Each layer of the model consists of at least
one neuron (i.e. partial descriptor with linear or quadratic input
variables combination). The algorithm automatically selected only
four input variables (F0, F1, F3, F4) from the seven input variables
Fi , i = 0, 1, . . . , 6 per sample provided to during the modelling.
This is because the algorithm carves out under-performing inputs
during the model synthesis. This automatic selection of relevant
inputs accounts for 43% reduction in the number of input variables
required to forecast the next-day average throughput. We evaluate
the performance of the GMDH-based forecaster by comparing its
predictions to the targeted values and computing the Mean Abso-
lute Percentage Error (MAPE), Mean Absolute Error (MAE) and
RMSE of the predictions. The MAPE and MAE are computed as
[12]

MAPE =

∑K
i

|yi− Ûyi |
yi

K
∗ 100

MAE =

∑K
i |yi − Ûyi |

K

where yi is the targeted value, Ûyi is the predicted value and K is the
size of the evaluation set. We also compare the performance of the
GMDH-based forecaster with state-of-the-art LSTM method. We
implement an LSTM-based one-step ahead forecaster consisting of
a single hidden layer of LSTM units [10]. We look for the optimum
number of nodes for the hidden layer in the range [10, 100] by using
5 points equally spaced in a linear scale. We used Rectified Linear
Unit (ReLU) as activation function, Adam optimiser and ran the
model fitting process for 1500 epochs.

3.3 Discussion of Results
The results of the first experiment are shown in Table 1. The LSTM-
based forecaster predicts the average throughput with a MAPE,
MAE, and RMSE of 4.45%, 2993.57 Kbps and 3911.64 Kbps, respec-
tively. Whereas the proposed GMDH-based forecaster performance
better with MAPE, MAE, and RMSE of 4.06%, 2735.87 Kbps and
3575.25 Kbps, respectively. Figure 3 shows the plots of the actual
and predicted hourly average throughput per user for both GMDH
and LSTM based models.

The results of the second experiment are summarised in Table
2. The targeted average throughput per user for the evaluation
week is 11,210,147.10 Kbps. The GMDH-based forecaster despite
using only 57% of the input variables, predicted the throughput
as 11,202,468.53 Kbps with MAPE of 1.87%, while the LSTM-based
forecaster predicted a throughput of 11,304,785.50 Kbps with MAPE

https://www.dropbox.com/s/fkt3gdlxogedf84/Dataset.xlsx?dl=0
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(a) GMDH-based Model
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Figure 3: The actual and predicted hourly average through-
put per user. (a) GMDH-based model predicts with MAPE,
RMSE, and MAE error of 4.06%, 3575.25 Kbps, 2735.87 Kbps,
respectively. (b) LSTM-based model predicts the throughput
with slightly worse MAPE, RMSE, and MAE error of 4.45%,
3911.64 Kbps, 2993.57 Kbps, respectively.

Table 1: Summary of the performances of the forecasting
models in predicting the hourly average throughput.

Evaluation Criteria GMDH-based Model LSTM-based Model
RMSE (Kbps) 3,575.25 3,911.64
MAE (Kbps) 2,735.87 2,993.57
MAPE (%) 4.06 4.45

Table 2: Summary of the performance of the forecasting
models in predicting the average throughput for the entire
evaluation week. The value in bracket is the actual aggre-
gated throughput for the evalution week.

Evaluation Criteria GMDH-based Model LSTM-based Model
Mean throughput per user (Kbps) 11,202,468.53 (11,210,147.10) 11,304,785.50 (11,210,147.10)

Input variables used (%) 57 100
RMSE (Kbps) 36,151.78 37,288.68
MAE (Kbps) 31,206.15 32,586.18
MAPE (%) 1.87 2.04

of 2.04%. Figure 4 shows the relative error committed by both meth-
ods on a daily basis for the entire week. As illustrated in the figure,
the performance of the GMDH-based forecaster is comparable to
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Figure 4: Relative error incurred by two the forecasters in
predicting the daily throughput per user in a week.

the LSTM-based model, in addition to achieving a reduction of 43%
in the input data dimensionality.

4 CONCLUSION
This paper demonstrates the use of the GMDH-based algorithm
as an alternative approach for modelling and forecasting the av-
erage network throughput per user in UMTS-based cellular data
network. We train a GMDH-based model on hourly mobile user
throughput time-series data for three weeks and used it to forecast
the throughput for the fourth week with MAPE as low as 1.87%.
This result is better than the 2.04% MAPE obtained using state-
of-the-art LSTM-based recurrent neural networks. Moreover, the
GMDH algorithm’s ability to automatically selects effective input
variables accounts for a 43% reduction in the dimensionality of the
training data required for the model and also gives better insight
into the modelled throughput forecaster.
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